TALK DANG 29/09/2022

Joint work with Bailbul, Det , Fendinand , Vigner-Tournert.

Zet (Mig) be a 6°, closed, compact, Riemannian mifd.

Goal: construct the phs measure on D'(M).

First non-perturbative, interacting RFT on 3-mifd.

Method + Tools: SPDE technique, latest results of Grubinelli-Hofmanoon and Jaganath-Perkowski

+ The Extended technique developed by Papineou-Store,

Brunetti-Fredenhagen in the version of my that Thosis, plead analysis.

+ paradiff calculus of Bony - Meyer on infols.

What is this all about?		ac \ Directle
TOY MODEL: di	Evrete BOX 1 C Z 3	$S(\sigma)$ which a c c
oon ee	Evrete BOX 1 CZ3 E Ji - Ji 2	+ \(\tam^2 \) \(\tau_i \) \(
5 prings	Gibbs measure of GFF	manaide
Déf: [Corne	lation function = JRA Ji2- Jih S(T)	e 56)
	J _{IR} , e ^{-5(t)}	1 Ferrancy
	SIRA PIZZO TILE PIZZO	Zi (Ti Ti)
	Sin A Cini	d ^
Jendercy of S	spins to have 1	Jame Jign!

The P(T) discret model,

Polynomial bounded

from below $S(T) = \frac{2}{i \sqrt{j}} \frac{|T_i - T_j|^2}{2} + \frac{2}{i} \frac{|T_i - T_j|^$ Intuitive meaning to align manes

some righ

2 preferred rest positions

3 Interested in $\sqrt{J_{i_2}} - \sqrt{J_{i_2}}$ for $I(J) = \sqrt{4}$ specially saling hinit

 $\frac{1}{E^3}$ $\stackrel{!}{i \in IA}$ $\stackrel{!}{\sum}$ $\stackrel{!}{\sum}$ $\stackrel{!}{i \in IA}$ $\stackrel{!}{\sum}$ $\stackrel{!}{\sum}$ Answer: Yes! \$3 measure by Orlin-Ife 70's IR3,78 P(\$) 2 Nelson, Segal 60's IR2, T2

Many works: Fröhlich (Feldman, Rivarsean, Magnen, Strior,

Rrydges, Slede, Baleban, Grawedzki, Kupiainen, Spencer In any case, & emits as a random singular distribution. Sumple way: $(|\nabla \phi|^2 d^2 n) \text{ for } d \leq 3$ doin analysis $|5|=0 \Rightarrow |\phi|=2-d$ $=) \quad \phi \in 6^{\frac{2-d}{2}-0} \quad \text{a.s.} \qquad d=2 \Rightarrow \phi \in 6^{-0} \\ d=3 \Rightarrow \phi \in 6^{-\frac{2}{2}-0}$ ANOTHER WAY to generate: as equilibrium Horo to obtain GIBBS meas. $C = S(\phi)$ $d^{\wedge}\phi$ function on IR configuration space

Moro deservations: $\Delta_{\mathbb{R}^{\Lambda}} = 0 = \left(\frac{-S(\phi)}{\mathbb{R}^{\Lambda}} e^{-S(\phi)} \right) = 0$ = 0 $H = \begin{pmatrix} -S(\phi) & \Delta_{IR} & e^{-S(\phi)} \end{pmatrix}^{\frac{1}{2}} = \frac{\Delta_{IR}}{2} + \frac{\nabla_{IR}}{2} + \frac{$

If P has degree 2p > 4, then $P \in L^{1}(\mathbb{R}^{n})$ observable: $\forall \phi \in \mathbb{R}^{n}$ $F(\phi) >_{n} = \mathbb{E}_{P}(F) = \lim_{t \to +\infty} (e^{-tH} F)(\phi_{0})$

Consergence to equilibrium enponentially fort $t - s + \infty$ This means:

$$|\overline{E}_{f}(F) - (e^{-tH}F)(\phi_{0})| \leq e^{-\kappa t}$$

$$|\overline{E}_{f}(F)| + (e^{-tH}F)(\phi_{0})| + (e^{-tH}F)(\phi_{0})| = e^{\kappa$$

QUESTION: \$\frac{1}{3}\$ constructed in 1R3, what about 3- manifold (M1g)?

BORING PROBLEM Witten 2112.11614

If a theory exists perturbatively in curved spacetime, and nonperturbatively in flat spacetime, one would expect that it works nonperturbatively in curved spacetime. Unfortunately, not much is available in terms of rigorous theorems, except for special models like two-dimensional conformal field theories. That reflects the general mathematical difficulty of understanding quantum field theory rigorously. One would think that rigorous results for a superrenormalizable theory in curved spacetime might be relatively accessible, but such results are not available.

QFT non perturbative on Mfd: Liouville CFT P(\$)2 GN2 \$\\ \phi^4 \\ \\ \text{Linwille CFT} \\
DIMOCK (2007) \\
PICKRELL (2007) \\
? \\
\text{VARGAS (2019, 2022)} GOAL: Try to construct \$43 measure on coercy compact Riemannian (M, g), COVARJANT. Our tool: Stochastic differential equation -> SPDE on D'(M)

on IR^

on D'(M)

on D'(M)

RXM, S[t,n) white noise

Consider parabolic of 3 SPDE: $\partial_{t} \Phi + (\Delta_{3} + 1) \Phi = -\lambda \Phi^{3} + \delta \lambda \epsilon^{6} (M)$ > coupling function, \$43 measure. INVARIANT SPDE meas. Following Gubinelli-Hofmanova, Jagannath-Perkowski (other approach Hairer) Solve equation graphically. IE (5(t,n)3(s,y)) = S(t-s)5"(x,y)

Trees of + (lag+2) = 2 | , 3 0

Let you tring friced point equation in terms of trues:

$$\phi = -\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$
when solution $\lambda = 0$

$$= 9 - 4 + C + W + 20 + Z = 6$$

Tothedula filtred: $0 = \frac{5}{2}$) $9 = \frac{4}{2}$) $9 = \frac{1}{2}$

and line | and + 2 to weights

$$\phi = \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$$
and line | and + 2 to weights

$$\phi = \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$$
Temper denotes the second of the se

 $Z = -3\lambda \sqrt{(Z-\sqrt{\lambda})} -3\lambda (Z-\sqrt{\lambda})^2 -\lambda (Z-\sqrt{\lambda})^3$

Them:
$$U \in \mathcal{C}^{\infty}$$
, $u \in \mathcal{C}^{\beta}$, $\alpha + \beta > 0$

=) $U \in \mathcal{C}^{\infty}$ if $|u| \in \mathcal{C}^{\beta}$, $\alpha + \beta > 0$

Hence V , V wick $|v|$; $|v|$ by $|v|$ $|v|$

and o NEW UNKNOWN

GOAL of e-3; Yr: COLE-HOPF transform to kill \$\frac{1}{2}. o solves complicated equation, finally $\mathcal{Z}\phi + \left(3\lambda c_1 - 3\lambda^2 c_2\right)\phi + \lambda\phi^3 = 5$ C2 = 8/272 E two counterterms. $C_2 \approx |\log(2)| = \text{div part of } \bigcirc$ INGREDIENTS to move slort time existence MAIN for F 6° $F(\gamma)$ $R(\gamma)$ BORDERLINE product 1-+-1- = 0 renorm object

9-1
6 need to deal with to do fined point and solve SPDE.

ANALYSIS HARMONIC

U>0+U<0,+U00 U × U = < pointurise product >

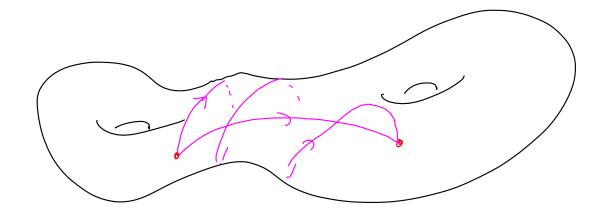
paraproducts always well-defined $(u,v) \rightarrow u < v \in C inj(x,0) + B$

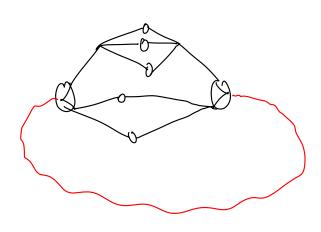
u (i) v E b well-defined only if x+p>04° 4° ALL PROBLEMS in (i)

are mon associative Back to over term, isolate land:

Frakherige: $F(u) = F'(u) \times u + mice$ (Y. Meyer, J. H. Bony) $= (F(u) \times u + mice)$ = (Y. Meyer, J. H. Bony)

ESTIMATES: prove Regularity STOCHASTIC H= Sobeleo Mare proof idea: $= \left(\frac{\Delta}{12} + 1 \right)$ $= \frac{e^{-\left(s_2 - s_2 \right) \left(\Delta + 2 \right)}}{e^{-\left(s_2 - s_2 \right) \left(\Delta + 2 \right)}}$ + propagators $e^{-(t-s)(\underline{\Lambda}+1)}$ Vivore finitenes, Epstein-Glaser: nuser: 4 pts = 4 vertices CONFIG SPACE


TOY EXAMPLE; $\left|\mathcal{N}\right|^{-\frac{1}{2}}$ homogeneity $-\frac{1}{2} > -$ cochi. codin (.) = 1 MORALITY: compre homogeneity under SCALING VS - Codin of singularity Here is the same encept June D' distributions whose ín \ ' Where Mont set [] = posi 0 + codirect of singularities


Scaling measured with PARABOLIC EULER P Diagonal
Codim voeighted = 3x3+2x2
= 13

M4xIR2 ta = -3 -2 s E D(M4x1R2) weakly homogeneous deg (-3-3-3-3-25) $(e^{-t}P * the extension of the$ Refines a concept due to Y. Meyer Weighted codin = 13 - 13 < -12-2s =) homogeneity weighted codin

THANKS FOR YOUR

ATTENTION!

